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1 General concept

1.1 Strain

We are assuming small deformation theory, so that strains are described by the small strain tensor εij , and
the deformation rate tensor is equal to its rate of change ˙εij

1.2 Stress

Stresses are defined so that the power of deformation per unit volume is σij ε̇ij

1.3 State

The state of a material element is defined by εij , an internal variable αij and either temperature θ or entropy
S. For the present purposes, it is sufficient to introduce a signle second order tensorial internal variable, which
can frequently be identified with the ”plastic strain”

2 Thermodynamics laws

First law:
Ẇ + Q̇ = U̇ (1)

Second law:
Ṡ ≥ −

(qk
θ

)
,k

(2)

in which:

• Ẇ = σij ε̇ij : mechanical work input

• Q̇ = −qk,k: heat supply to a volume element

• qk: heat flux vector

• U(εij , αij , S): internal energy per unit volume

• S: entropy

•
qk

θ
: entropy flux

Expansion of equation (2) gives us:

Ṡ ≥ −qk,kθ − qkθ,k
θ2

(3)

θṠ + qk,k − qkθ,k
θ

≥ 0 (4)

The first two terms θṠ + qk,k = Ḋ are called mechanical dissipation The third term −qkθ,k/θ is called
thermal dissipation. The thermal dissipation is always non-negative by virtue of the fact that the heat flux is
always in the direction of the negative thermal gradient. The third term becomes small by comparison with
the first two for slow process, so it is argued that the mechanical dissipation must itself be non-negative.
Required both θṠ + qk,k = Ḋ ≥ 0 and −qkθ,k/θ ≥ 0 is more stringent condition than the second law, but it
is widely accepted. In this case the separation of the thermal and mechanical dissipations and enforcement
of the mechanical dissipation should only be considered as a restriction on the field of continua treated in
this study. In the following, we shall require that Ḋ ≥ 0

From (1) ⇒ U̇ = σij ε̇ij − qk,k, and the definition of Ḋ it follows that:

U̇ = σij ε̇ij + θṠ − Ḋ (5)

1



Vu Nguyen The framework of thermodynamics approach to constitutive modelling

The internal energy is a function of the state. In writing this function, it is convenient to choose the
entropy rather than the temperature as the independent variable so that we write U = U(εij , αij , S)

Furthermore, the time derivative of internal energy U:

U̇ =
∂U

∂εij
˙εij +

∂U

∂αij
α̇ij +

∂U

∂S
Ṡ (6)

Comparing eq(5) and eq(6), we can derive these relationships:

σij =
∂U

∂εij
(7)

θ =
∂U

∂S
(8)

Ḋ = − ∂U

∂αij
α̇ij (9)

It can be seen here that the associated variables with strain εij and temperature θ are stress σij and
entropy S, respectively. Therefore, in an analogous manner, the thermodynamic forces associated with the
internal variable αij can be defined to be:

χ̄ij = − ∂U

∂αij
(10)

χ̄ is a stress-like variable, and it is called the generalized stress. Now, the dissipation function can be
rewritten as follow:

Ḋ = χ̄ijα̇ij (11)

We assume that the dissipation function is not only a function of the thermodynamic state of the material,
but also the rate of the state. It is found, in the following that it is sufficient to consider just those mechanisms
where dissipation depends only on the rate of change of the internal variable α̇ij .

The dissipation function can be written in various forms:

Ḋ = ḊF = Ḋ(εij , αij , α̇ij)

Ḋ = ḊG = Ḋ(σij , αij , α̇ij)

In each case, we define ”dissipative generalized stress” as χij = ∂ḊE/∂α̇ij , with E stands for G or F

Using the fact that for a rate-independent material, the dissipation Ḋ must be a homogeneous of degree
one in the rate α̇ij (Houlsby and Purrin, 2000). Euler’s theorem gives:

Ḋ =
∂Ḋ

∂α̇ij
= χijα̇ij (12)

NOTE: the reason why dissipation must be a homogeneous of degree one in the rate of internal variables
can be explained in this way: The differentiate of dissipation function gives the dissipative generalized stress.
This dissipative generalized stress will appear in our constitutive model. If dissipation function is not the
first order homogeneous , the transformation from the function of internal variable (dissipation function) to
the function of dissipative stress (yield stress), the internal variable which is contained in dissipative stress
cannot be fully eliminated. Thus, the model will be rate-dependent. In other words, if dissipation function
is not the first order homogeneous, it will lead to the yield function for rate-independent material

Comparing (11) and (12), one obtains:

(χ̄ij − χij)α̇ij = 0 (13)

As χij may be a function of α̇ij , it can be concluded here that χ̄ij − χij is always orthogonal to α̇ij .
However, as argued by Ziegler (1983) and presented by Houlsby and Puzrin (2000), a rather wide rage of
classes of materials can be described by enforcement of a stronger condition χ̄ij = χij . This condition is
called Ziegler’s orthogonality condition and was adopted in the framework by Houslby and Puzrin (2000)
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3 An approach by Helmholtz specific free energy F (εij, αij, θ)

Since we are concerned with isothermal deformation in which θ is constant, it will be more convenient if S
is replaced by θ in the expression for energy function. Notice that σij = ∂U/∂S. Therefore, the internal
energy U(εij , αij , S) can be transformed into the function F (εij , αij , θ) by using Legendre transformation.

U − F = Sθ ⇒ F = U − Sθ (14)

in which: S = −∂F/∂θ. Differentiate F with respect to time results in:

Ḟ = U̇ − Sθ̇ − θṠ (15)

From eq (5) and (15)

Ḋ = σij ε̇ij − Ḟ − θ̇S − qkθ,k
θ

≥ 0 (16)

As explained in the previous part, −qkθ,k/θ is negative and small, therefore; it is neglected
Thus, the rate of dissipation function can be rewritten:

Ḋ = σij ε̇ij − Ḟ − θ̇S ≥ 0 (17)

If the isothermal problems are considered, then Ḋ is simplified into:

Ḋ = σij ε̇ij − Ḟ (18)

4 Gibbs Free Energy Function

For further developments, it has been proved convenient to also introduce the Gibbs free energy function
G(σij , αij). This can be obtained from the Helmholtz free energy function F (εij , αij), by a partial Legendre
transformation interchanging the strain and stress variables:

F (εij , αij)−G(σij , αij) = σijεij (19)

where:

εij = −
∂G

∂σij
(20)

and

χij = −
∂G

∂αij
(21)

5 Thermodynamics potentials for elastic/pclastic materials

5.1 Decouple materials

In developments of the theory of elasto-plastic materials it is common to assume at the outset that the
(small) strain tensor can be regarded as the sum of ”elastic” and ”plastic” parts. However, it is possible
to deduce this decomposition formally for a material whose instantaneous elastic moduli are independent of
the internal variables - a so called ”decoupled material”

Differentiating (20) with respect to time shows that the strain rate is the sum of two terms:

ε̇ij = − ∂2G

∂σij∂σkl
σ̇kl −

∂2G

∂σij∂αkl
α̇kl = ε̇eij + ε̇pij (22)

The coefficient of the σ̇kl term is the instantaneous elastic compliance, which, for a decouple material, is

independent of the internal variable αij , so that
∂3G

∂σij∂σkl∂σmn
= 0
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It follows that the coefficient of the α̇ij term is necessary independent of σij Hence, both terms can be
integrated separately with respect to time to give the elastic strain, and plastic strain, respectively

It further follows from the decoupled assumption, upon integration of the second derivatives in (22) that
the Gibbs free energy function must take the form

G(σij , αij) = G1(σij) +G3(αij)σij +G2(αij) (23)

The cross term is hence linear in stress. Up to this point, the internal variable has not been given any
specific physical significance.

We can replace the function G3(αij) by αij without any loss of generality:

G(σij , αij) = G1(σij)− σijαij +G2(αij) (24)

From (20):

εij = − ∂G

∂σij
= −∂G1

∂σij
(σij) + αij (25)

or:
εij = εeij(σij) + αij (26)

where the elastic strain εeij is a function just of stress and αij can now be identified as the plastic strain.

With this choice of α, the mixed second derivative
∂2G

∂σij∂αkl
= −δikδjl

5.2 Couple material

6 Derived Yield Function and Flow Rule from Dissipation func-
tion

6.1 Singular transformation of a first order homogeneous function

The transformation from a homogeneous of degree one functionX(xi, αi) t the function Y (yi, αi) is considered
in this section. In the practical problem, X stands for dissipation function with x is the internal variable;
while Y represents the yield function with y is the dissipative generalized stress

Legendre transformation:
X(xi, αi) + Y (yu, αi) = xiyi (27)

in which:

xi =
∂Y

∂yi
(28)

yi =
∂X

∂xi
(29)

Because X(xi, yi) is a homogeneous of degree one function, we have:

X(xi, αi) = xi
∂X

∂xi
(30)

From eq(27) and eq(30)
Y (yi, αi) = 0 (31)

From this point we can see that the value of the function Y is always 0
From (27) and (31):

xiyi = X(xi, αi)

xidyi + yidxi =
∂X

∂xi
dxi +

∂X

∂αi
dαi

xidyi + yidxi = yidxi +
∂X

∂αi
dαi
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Therefore:

xidyi −
∂X

∂αi
dαi = 0 (32)

The differentiation of the dual function Y (yi, αi) = 0 gives:

∂Y

∂yi
dyi +

∂Y

∂αi
dαi = 0 (33)

From (32) and (33):

xi = Λ
∂Y

∂y
(34)

Λ
∂Y

∂αi
= −∂X

∂αi
(35)

Note:
a) λ is an undetermined scalar, reflecting the non-unique nature of this singular transformation
b) The value of yi = ∂X/∂xi is unaffected by the transformation xi → λxi. So, the mapping from xi → yi

is ∞ → 1

6.2 Derive the flow rule and yield function from a stress-independent dissipa-
tion function

Consider dissipation functions which depend only on αij and α̇ij Other possible functional dependencies
will be discussed later. Also, we only consider rate-independent material here, which means the dissipation
function D must be homogeneous of degree one in α̇ij

From the orthogonality postulate, it follows that the generalized stresses are given by:

χij =
∂Ḋ

∂α̇ij
(αij , α̇ij) (36)

So that, in general, a Legendre Transformation of Ḋ(αij , α̇ij) introduces a new function Ω(αij , χij), with
the properties that

Ḋ(αij , α̇ij) + Ω(αij , χij) = χijα̇ij (37)

From the Legendre transformation for a singular transformation of a homogeneous of degree one as
discussed above, we can derive a function that contains only stress-like variable, and that the value of that
function is always zero, which is the same characteristic to the yield function

f(αij , χij) = 0 (38)

and the flow rule:

α̇ij = Λ
∂f

∂χij
(39)

Equation (39) are associated flow rule, expressed in generalized stress space, not true stress space.
The question immediately arises ”does normality also hold in true stress space?” To answer this question,

we must replace χij in eq (39) by σij .
A field function in true stress space can be defined by:

f̂(αij , σij) = f(αij ,−
∂G

∂αij
(σij , αij)) = 0 (40)

Then
∂f̂

∂σij
=

∂f

∂χkl

−∂2G

∂αkl∂σij
(41)

so that the flow rule now takes the form:

Λ
∂f̂

∂σij
=

−∂2G

∂αkl∂σij
α̇kl (42)
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From eq(22) and (42):

ε̇pij = Λ
∂f̂

∂σij
(43)

To sum up, if the internal variable is chosen to be plastic strain εpij then, the associated flow rule is
satisfied in both true stress and dissipative generalized stress space as long as dissipation function is not
stress-dependent function

6.3 Derive the flow rule and yield function from a stress-dependent dissipation
function

Consider the dissipation functions of the form Ḋ(σij , αij , α̇ij).
From the orthogonality postulate, it follows that the generalized stresses are given by:

χij =
∂Ḋ

∂α̇ij
(σij , αij , α̇ij) (44)

So that, in general, a Legendre Transformation of Ḋ(σij , αij , α̇ij) to a new function Ω(σij , αij , χij), with
the properties that

Ḋ(σij , αij , α̇ij) + Ω(σij , αij , χij) = χijα̇ij (45)

From the Legendre transformation for a singular transformation of a homogeneous of degree one as
discussed above, we derive a function in which its value is always zero, which is same characteristic to the
yield function:

f(σij , αij , χij) = 0 (46)

and this relationship, which is identity to flow rule:

α̇ij = Λ
∂f

∂χij
(47)

∂D

∂σij
= −Λ

∂f

∂σij
(48)

and for passive variables:
∂D

∂αij
= −Λ

∂f

∂αij
(49)

Equation (47) are associated flow rule, expressed in generalized stress space, not true stress space.
The question immediately arises ”does normality also hold in true stress space?” To answer this question,

we must replace χij in eq (47) by σij .
A field function in true stress space can be defined by:

f̂(αij , σij) = f(σij , αij ,
−∂G

∂αij
(σij , αij)) = 0 (50)

Then
∂f̂

∂σij
=

∂f

∂σij
+

∂f

∂χkl

−∂2G

∂αkl∂σij
(51)

So that the flow rule now takes the form:

Λ
∂f̂

∂σij
= Λ

∂f

∂σij
+

−∂2G

∂αkl∂σij
α̇kl (52)

From eq(22), (52) and (48):

ε̇pij = Λ
∂f̂

∂σij
+

∂Ḋ

∂σij
(53)
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We have noticed that when Ḋ depends explicitly on the stress, the normality rule cannot be expected
to hold in true stress space. As for the case of coupled material it is to be emphasised that this non-
associated behavior arises naturally from the general thermomechanical framework, no new function needs
to be introduced to describe to formulate the constitutive equations

7 Elastoplastic stiffness matrix Dep

The increment form of strain from (22)

˙εij = − ∂2G

∂σij∂σkl
˙σkl −

∂2G

∂σij∂α
p
kl

α̇p
kl (54)

Associated flow rule for rate-independent material (43):

α̇p
kl = Λ

∂f̂

∂σkl
(55)

From the yield function in(46), consistency condition is derived:

˙̂
f =

∂f̂

∂σmn
σ̇mn +

∂f̂

∂αij
α̇ij = 0 (56)

˙̂
f =

∂f̂

∂σmn
σ̇mn +

∂f̂

∂αmn
Λ

∂f̂

∂σmn
(57)

Thus, plastic multiplier is calculated as follow:

Λ =
−

∂f̂

∂σmn
σ̇mn

∂f̂

∂αmn

f̂

∂σmn

(58)

We substitute this into equation (54)

ε̇ij = − ∂2G

∂σij∂σkl
σ̇kl −

∂2G

∂σij∂αkl
Λ

∂f̂

∂σkl
(59)

ε̇ij = − ∂2G

∂σij∂σkl
σ̇kl −

∂2G

∂σij∂αkl

−
∂f̂

∂σmn
σ̇mn

∂f̂

∂αmn

f̂

∂σmn

∂f̂

∂σkl
(60)

ε̇ij =

[
− ∂2G

∂σij∂σmn
+

∂2G

∂σij∂αkl

∂f̂

∂σkl

∂f̂

∂αmn

f̂

∂σmn

∂f̂

∂σmn

]
σ̇mn (61)

Thus, the Elastoplastic compliance matrix is derived as follow:

Cep =

[
− ∂2G

∂σij∂σmn
+

∂2G

∂σij∂αkl

∂f̂

∂σkl

∂f̂

∂αmn

∂f̂

∂σmn

]
(62)

Remember, the Elastic compliance matrix is:

Ce =

[
− ∂2G

∂σij∂σmn

]
(63)
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8 Application of the framework to develop Modified Cam Clay
model

8.1 Two energy functions

The whole constitutive model of Modified Cam clay, which is an isotropic hardening model, will be developed
based on only 2 energy functions:

a) Rate of dissipation energy

Ḋ =
1

2
pc

√
(ε̇pv)2 +M2(ε̇pd)

2 = πc

√
(ε̇pv)2 +M2(ε̇pd)

2;πc =
pc
2

(64)

in which pc = pcε
p
v is the maximum preconsolidation pressure. Notice that Ḋ is a homogeneous of degree

one with respect to ε̇pv and ε̇pd because we are working with a rate-independent model
b) Gibbs free energy function

G = −κp
(
ln

p

pR
− 1

)
− q2

6gs
− (pεpv + qεpd) +

1

2
(λ− κ)pc0 exp

( εpv
λ− κ

)
(65)

8.2 Yield function in dissipative stress space

The Legendre transformation from a homogeneous of degree one function Ḋ(ε̇pv, ε̇
p
d, πc) to a function Ω(π, τ, πc)

Which means:
Ḋ +Ω = πε̇pv + τ ε̇pd (66)

In which:
Dissipative stress:

π =
∂Ḋ

∂ε̇pv
= πc

ε̇pv√
ε̇pv

2
+M2ε̇pd

2
; τ =

∂Ḋ

∂ε̇pd
= πc

M2ε̇pd√
ε̇pv

2
+M2ε̇pd

2
(67)

From (66):

Ω = πε̇pv + τ ε̇pd − πc

√
(ε̇pv)2 +M2(ε̇pd)

2

=
π2

πc

√
(ε̇pv)2 +M2(ε̇pd)

2 +
τ2

πcM2

√
(ε̇pv)2 +M2(ε̇pd)

2 − πc

√
(ε̇pv)2 +M2(ε̇pd)

2

= πc

√
(ε̇pv)2 +M2(ε̇pd)

2
(π2

π2
c

+
τ2

M2π2
c

− 1
)

Finally:

Ω = πc

√
(ε̇pv)2 +M2(ε̇pd)

2
(π2

π2
c

+
τ2

M2π2
c

− 1
)

(68)

Again, because Ḋ is the homogeneous of degree one with respect to ε̇pv and ε̇pd we directly have: Ḋ =

∂Ḋ

∂εpv
+

∂Ḋ

∂εpd
= πε̇pv + τ ε̇pd. Therefore, Ω is equal to 0 in equation (66). Therefore, based on the formation of Ω

in (68) we can derived this equation:

π2

π2
c

+
τ2

M2π2
c

= 1 (69)

Now, we obtain a function in which its value is always zero. Therefore,we can consider it as the yield function
in dissipative stress space:

f(π, τ, πc) :
π2

π2
c

+
τ2

M2π2
c

− 1 = 0 (70)
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8.3 Flow rule in dissipative stress space

The dissipation function which is the homogeneous first order function of strain rates can now be written in
this form:

Ḋ(ε̇pv, ε̇
p
d, πc) = πε̇pv + τ ε̇pd (71)

The time derivative of both sides of equation (71) give:

∂Ḋ

∂ε̇pv
dε̇pv +

∂Ḋ

∂ε̇pd
dε̇pd +

∂Ḋ

∂πc
dπc = ε̇pvdπ + πdε̇pv + ε̇pddτ + τdε̇pd

⇔ πdε̇pv + τdε̇pd +
∂Ḋ

∂πc
dπc = ε̇pvdπ + πdε̇pv + ε̇pddτ + τdε̇pd

⇔ ε̇pvdπ + ε̇pddτ − ∂Ḋ

∂πc
dπc = 0

Finally we have:

ε̇pvdπ + ε̇pddτ − ∂Ḋ

∂πc
dπc = 0 (72)

Consistency condition:
A mathematical expression of the requirement that the stress state stays on the failure surface as long as

loading continues, even though the failure surface itself will be moving and changing shape due to hardening:
f + df = 0 However, recall that the failure surface is defined such that f = 0 is the onset of plastic flow.
Thus, the above equation can be simplified : df = 0 . From (70):

∂f

∂π
dπ +

∂f

∂τ
dτ +

∂f

∂πc
dπc = 0 (73)

From (72),(73), flow rule is obtained:

ε̇pv = Λ
∂f

∂π
; (74)

ε̇pd = Λ
∂f

∂τ
; (75)

and this is also one of the result from the transformation

∂Ḋ

∂πc
= −Λ

∂f

∂πc
(76)

Note: The flow rule is always associated in dissipative stress space.

8.4 Relationship between true stress and dissipative stress

Apply eq (21) with respect to the Gibbs free energy chosen above, we obtain:

π = − ∂G

∂εpv
= p+ pc; τ = − ∂G

∂εpd
= q (77)

In which pc = pc0 exp
( εpv
λ− κ

)
is the maximum pre-consolidation pressure

8.5 Yield function in true stress space

From (70) and (77), yield function in the true stress space:

f̂(σ̂, εpv) :
(p− πc)

2

π2
c

+
q2

M2π2
c

− 1 = 0 (78)
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8.6 Flow rule in true stress space

Yield function in the true stress space:

f̂(εpij , σij) = f(εpij ,
−∂G

∂εpij
(σij , ε

p
ij)) = 0 (79)

Thus
∂f̂

∂σij
=

∂f

∂χkl

−∂2G

∂εpkl∂σij
(80)

The flow rule now takes the form:

Λ
∂f̂

∂σij
= Λ

∂f

∂χkl

−∂2G

∂εpkl∂σij
(81)

Λ
∂f̂

∂σij
= εpij (82)

As can seen here, in Modified Cam Clay model, the flow rule is associated flow rule in true stress

9 Elastoplastic stiffness matrix Dep

The increment form of strain from (53)

˙εij = − ∂2G

∂σij∂σkl
˙σkl −

∂2G

∂σij∂ε
p
kl

ε̇pkl (83)

Associated flow rule (82):

ε̇pkl = Λ
∂f̂

∂σkl
(84)

From the yield function in eq(78), consistency condition is derived:

˙̂
f =

∂f̂

∂σmn
σ̇mn +

∂f̂

∂εpv
ε̇pv = 0 (85)

˙̂
f =

∂f̂

∂σmn
σ̇mn +

∂f̂

∂εpv
Λ

∂f̂

∂σmm
(86)

Thus, plastic multiplier is calculated as follow:

Λ =
−

∂f̂

∂σmn
σ̇mn

∂f̂

∂εpv

f̂

∂σmm

(87)

We substitute this into equation (53)

˙εij = − ∂2G

∂σij∂σkl
σ̇kl −

∂2G

∂σij∂ε
p
kl

∂f̂

∂σkl

−
∂f̂

∂σmn
σ̇mn

∂f̂

∂εpv

f̂

∂σmm

(88)

ε̇mn =

[
− ∂2G

∂σij∂σmn
+

∂2G

∂σij∂ε
p
kl

∂f̂

∂σkl

∂f̂

∂εpv

f̂

∂σmm

∂f̂

∂σmn

]
σ̇mn (89)
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Thus, the Elastoplastic compliance matrix is :

Cep =

[
− ∂2G

∂σij∂σmn
+

∂2G

∂σij∂ε
p
kl

∂f̂

∂σkl

∂f̂

∂εpv

f̂

∂σmm

∂f̂

∂σmn

]
(90)

Note that the Elastic compliance matrix is :

Ce =

[
− ∂2G

∂σij∂σmn

]
(91)

10 Derivative of G with respect to σ

10.1
∂2G

∂σij∂σkl

Set:

A = −κp
(
ln

p

pR
− 1

)
− q2

6gs
(92)

Notice that:
∂2G

∂σij∂σkl
=

∂2A

∂σijσkl
(93)

∂A

∂σij
=

∂A

∂p

∂p

∂σij
+

∂A

∂q

∂q

∂σij

= −κ
[
ln

p

pR
− 1 + p

1

p

]δij
3

− q

3gs

√
3

2

Sij

∥ Smn ∥

= −κ

3
δij ln

p

pR
− q

gs
√
6

Sij

∥ Smn ∥
= −κ

3
δij ln

p

pR
− 1

2gs
Sij = B

∂2A

∂σij∂σkl
=

∂B

∂σkl

=
∂B

∂p

∂p

∂σkl
+

∂B

∂q

∂q

∂σkl
+

∂B

∂Sij

∂Sij

∂σkl

=
[
− κ

3
δij

1

p

δkl
3

]
+ 0 +

[
− 1

2gs

(
δkiδlj −

1

3
δijδkl

)]
= − κ

9p
δijδkl −

1

2gs

(
δkiδlj −

1

3
δijδkl

)
Finally:

∂2G

∂σij∂σkl
= − κ

9p
δijδkl −

1

2gs

(
δkiδlj −

1

3
δijδkl

)
(94)

It is worth to notice that ∂2G/∂σijσkl only depends on stress, not depend on strain
Elastic compliance:

Ce = − ∂2G

∂σij∂σkl
=

κ

9p
δijδkl +

1

2gs

(
δkiδlj −

1

3
δijδkl

)
(95)

11
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10.2
∂2G

∂σij∂ε
p
kl

∂2G

∂σij∂ε
p
kl

= −
∂(pεpv + qεpd)

∂σij∂ε
p
kl

= −
∂(σijε

p
ij)

∂σij∂ε
p
kl

= −
∂εpij
∂εpkl

= −δkiδlj

10.3
∂f̂

∂σmm

∂f̂

∂σmm
=

∂f̂

∂p

∂p

∂σmm
=

2(p− πc)

π2
c

(96)

10.4
∂f̂

∂σmn

∂f̂

∂σ
=

∂f̂

∂p

∂p

∂σmn
+

∂f̂

∂q

∂q

∂σmn

=
2(p− πc)

π2
c

δmn

3
+

2q

M2π2
c

3Smn

2q

=
2

3

p− πc

π2
c

δmn +
3

M2π2
c

Smn

10.5
∂f̂

∂εpv

∂f̂

∂εpv
=

∂f̂

∂πc

∂πc

∂εpv

=
[
− 2p2

π3
c

+
2p

π2
c

− 2q2

M2π3
c

][pc0
2

1

λ− κ
exp

εpv
λ− κ

]
=

(
− p2

π3
c

+
p

π2
c

− q2

M2π3
c

) pc0
λ− κ

exp
εpv

λ− κ

11 Appendix

11.1 Find the equation for Gibbs energy

Rewrite the equation (20),(21) in case of triaxial tests

εv = −∂G

∂p
= εev + εpv (97)

εd = −∂G

∂q
= εed + εpd (98)

12



Vu Nguyen The framework of thermodynamics approach to constitutive modelling

χp = π = − ∂G

∂εpv
= p− ρ (99)

χq = τ = − ∂G

∂εpd
= q (100)

Relationships derive in the isotropic loading-unloading calculation:

• Elastic volumetric strain

εev = κ ln

(
p

pR

)
(101)

• Elastic deviatoric strain: Assume the constant shear modulus

εed =
q

3gs
(102)

• Maximum preconsolidation pressure

pc0 = p0 ∗ exp

[
ln(1 + eNC)− λ ln

p0

pR

]
− ln(1 + e0)

λ− κ
(103)

• Hardening rule

pc = pc0 exp(
εpv

λ− κ
) (104)

Finally, the Gibbs free energy equation is derived as follow:

G = −κp

(
ln

p

pR
− 1

)
− q2

6gs
− (pεpv + qεpd) +

1

2
(λ− κ)pc0 exp

(
εpv

λ− κ

)
(105)

11.2 Dissipative energy and plastic stored energy in Modified Cam Clay Model

11.2.1 Conventional Modified Cam Clay model

Yield surface:
f : q2 −M2p(pc − p) = 0 (106)

Flow rule:
ε̇pv = −ΛM2(pc − 2p) (107)

ε̇pd = −2Λq (108)

11.2.2 Stress invariants in terms of εp and pc

From (107),(108):

q =
ε̇pd
2Λ

; p =
1

2

{
pc +

ε̇pv
ΛM2

}
(109)

Insert into (106): { ε̇pd
2Λ

}2

−M2 1

2

{
pc +

ε̇pv
ΛM2

}1

2

{
pc −

ε̇pv
ΛM2

}
= 0 (110)

Solve the above equation to get:

Λ =

√
(ε̇pv)2 +M2(ε̇pd)

2

M2pc
(111)

p =
1

2
pc +

pcε̇
p
v

2
√
(ε̇pv)2 +M2(ε̇pd)

2
(112)

q =
M2pcε̇

p
d

2
√
(ε̇pv)2 +M2(ε̇pd)

2
(113)

13
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11.2.3 Plastic work increment

Ẇ p = pε̇pv + qε̇pd =
1

2
pcε̇

p
v +

1

2
pc

√
(ε̇pv)2 +M2(ε̇pd)

2 (114)

11.2.4 Dissipation energy function & Stored plastic energy function

From the first law of thermodynamics:

Ẇ p = Ḟ p + Ḋ (115)

And the equation (114), we can choose both dissipation energy function and stored plastic work energy based
on the corresponding requirements:

• Ḋ: Non-negative function. Its value equal zero when plastic strain occurs. And it necessarily be a
homogeneous function of degree one with respect to plastic strain rate in case of rate-independent
material. Therefore, it can be chosen as:

Ḋ =
1

2
pc

√
(ε̇pv)2 +M2(ε̇pd)

2 = πc

√
(ε̇pv)2 +M2(ε̇pd)

2;πc =
pc
2

(116)

• Stored plastic energy function: a state function
There is no strict sign requirement for Ḟ p, it can be positive, negative or zero. But it should be
integrable with respect to plastic strain. And for a close loop of plastic strain, the increment of this
stored plastic energy function need to be zero. Hence, it can be chosen as:

Ḟ p =
1

2
pcε̇

p
v =

1

2
pcε̇

p
v (117)

In Modified Cam Clay model, we choose:

F p =
1

2
(λ− κ)pR exp

εpv
λ− κ

(118)

We can realize the relation between F p and Gp:

F p = Gp − (pεpv + qεpd) (119)
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