Gauss Integration
This is master branch A Python example:
def hello()
print("Hello World!")
A Julia example:
using Pkg;
Pkg.add("SymPy");
using SymPy;
using LinearAlgebra;
# ------------------------------------------------------------------------------
function gauss_integration(nGauss, dim)
# ------------------------------------------------------------------------------
# PURPOSE:
# Determine Gauss point's coordinate and the corresponding Gauss weight
# SYNTAX:
# gauss_integration(nGauss, rGauss, dim)
# INPUT:
# nGauss: the number of Gauss point
# dim : dimension of the problem (dim = 1 or dim = 2 or dim = 3)
# OUPUT:
# gausspoint_coordinate: The Gauss point's coordinate
# gausspoint_weight: The Gauss point's weight
#------------------------------------------------------------------------------
# Initiate gausspoint_coordinate and gausspoint_weight
gausspoint_coordinate = zeros(nGauss^dim, dim)
gausspoint_weight = Float64[];
# the integration domain is [-1 1] for all of direction:
# ------------- Limit the number of Gauss point up to 5 --------------------
if (nGauss > 5)
println("The number of Gauss point shouldn't be more than 5")
end
#------------- The number of Gauss point in one direction -----------------
if nGauss == 1
point = 0.0
weight = 2.0
j
elseif nGauss == 2
point = [-0.577350269189626
0.577350269189626]
weight = [1.0 1.0]
elseif nGauss == 3
point = [ 0
-0.774596669241483
0.774596669241483];
weight = [8/9
5/9
5/9];
elseif nGauss == 4
point = [-0.3399810435848563
0.3399810435848563
-0.8611363115940526
0.8611363115940526];
weight = [0.6521451548625461
0.6521451548625461
0.3478548451374538
0.3478548451374538];
elseif nGauss == 5
point = [ 0
-0.5384693101056831
0.5384693101056831
-0.9061798459386640
0.9061798459386640];
weight = [0.5688888888888889
0.4786286704993665
0.4786286704993665
0.2369268850561891
0.2369268850561891];
end
#-----------------------------DIMENSION -----------------------------------
# One dimension problem
if dim == 1
for i = 1:nGauss
gausspoint_coordinate[i,:] = [point[i]]
push!(gausspoint_weight, weight[i])
end
return gausspoint_coordinate, gausspoint_weight
# Two dimension problem
elseif dim == 2
n = 0
for i = 1:nGauss
for j = 1:nGauss
n = n + 1
gausspoint_coordinate[n,:] = [point[i] point[j]]
push!(gausspoint_weight, weight[i] * weight[j])
end
end
return gausspoint_coordinate, gausspoint_weight
# Three dimension problem
elseif dim == 3
n = 0
for i = 1:nGauss
for j = 1:nGauss
for k = 1:nGauss
n = n + 1
gausspoint_coordinate[n,:] = [point[i] point[j] point[k]]
push!(gausspoint_weight, weight[i] * weight[j] * weight[k])
end
end
end
return gausspoint_coordinate, gausspoint_weight
end
end
#=
Example1: Calculate the integration of
f(x) = 0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5
here x = [-1, 1]
=#
nGauss = 3
dim = 1
gauss_point, gauss_weight = gauss_integration(nGauss, dim)
f(x) = 0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5
I = 0
# loop over all of gauss points
for i = 1:length(gauss_point)
I = I + f(gauss_point[i]) * gauss_weight[i]
end
@show I
# Analytical solution
x = Sym("x")
I_analytical = integrate( 0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5, (x, -1, 1))
@show I_analytical
#=
Example 2: Calculate the integration of
f(x) = 0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5
where x = [0, 2]
=#
nGauss = 3
dim = 1
# function f
f1(x) = 0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5
a = 0 # lower bound of the limit
b = 2 # upper bound of the limit
J = (b-a)/2 # Jacobian value
I = 0
gauss_point, gauss_weight = gauss_integration(nGauss, dim)
for i = 1:length(gauss_point) # loop over Gauss points
x = (a+b)/2 + (b-a)/2* gauss_point[i]
I = I + J * f1(x) * gauss_weight[i]
end
@show I
# ANALYTICAL SOLUTION
x = Sym("x")
I_analytical = integrate(0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5,(x,0,2))
@show I_analytical
#=
Example 2: Calculate the integration of
f(x) = 0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5
where x = [0, 2]
=#
# function f
f1(x) = 0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5
a = 0 # lower bound of the limit
b = 2 # upper bound of the limit
J = (b-a)/2 # Jacobian value
println("The number of Gauss Points is equal to the necessary one")
# CHECK WITH THE LOWER NUMBER OF GAUSS POINT
I = 0
nGauss = 3
dim = 1
gauss_point, gauss_weight = gauss_integration(nGauss, dim)
for i = 1:length(gauss_point) # loop over Gauss points
x = (a+b)/2 + (b-a)/2* gauss_point[i]
I = I + J * f1(x) * gauss_weight[i]
end
@show I
println("The number of Gauss Points is higher than the necessary one")
# CHECK WITH THE HIGHER NUMBER OF GAUSS POINT
I = 0
nGauss = 4
dim = 1
gauss_point, gauss_weight = gauss_integration(nGauss, dim)
for i = 1:length(gauss_point) # loop over Gauss points
x = (a+b)/2 + (b-a)/2* gauss_point[i]
I = I + J * f1(x) * gauss_weight[i]
end
@show I
println("The number of Gauss Points is less than the necessary one")
# CHECK WITH THE LOWER NUMBER OF GAUSS POINT
I = 0
nGauss = 2
dim = 1
gauss_point, gauss_weight = gauss_integration(nGauss, dim)
for i = 1:length(gauss_point) # loop over Gauss points
x = (a+b)/2 + (b-a)/2* gauss_point[i]
I = I + J * f1(x) * gauss_weight[i]
end
@show I
#=
Example 3: Calculate the integration of
f(x, y) = 0.2 + 25x - 200y^2 + 675x^3 - 900y^4 + 400x^5
where x = [-1, 1], y =[-1, 1]
=#
nGauss = 5
dim = 2
# function f
f4(x,y) = 0.2 + 25x - 200y^2 + 657x^3 - 900y^4 + 400x^5
I = 0
gauss_point, gauss_weight = gauss_integration(nGauss, dim)
for i = 1:length(gauss_weight) # loop over Gauss points
I = I + f4(gauss_point[i,1], gauss_point[i,2]) * gauss_weight[i]
end
@show I
#Analytical
x = Sym("x")
y = Sym("y")
I_analytical = integrate(0.2 + 25x - 200y^2 + 657x^3 - 900y^4 + 400x^5, (x,-1,1), (y,-1,1))
@show I_analytical
#=
Example 4: Reference: https://ctec.tvu.edu.vn/ttkhai/TCC/21_Tich_phan_hai_lop.htm
Calculate integration of F = ∫∫dxdy, with the domain is limited by:
x + y = 1
x + y = 2
2x - y = 1
2x - y = 3
=#
ξ = Sym("xi")
η = Sym("eta")
# QUAD4 ELEMENT SHAPE FUNCTION?
N1 = 1/4*(1-ξ)*(1-η)
N2 = 1/4*(1+ξ)*(1-η)
N3 = 1/4*(1+ξ)*(1+η)
N4 = 1/4*(1-ξ)*(1+η)
X =[4/3, 5/3, 1, 2/3]
Y =[-1/3, 1/3, 1, 1/3]
x = [N1 N2 N3 N4]*X
y = [N1 N2 N3 N4]*Y
J =[diff(x,ξ) diff(y,ξ);
diff(x,η) diff(y,η)]
# detJ contain ξ and η
detJ = det(J)
gauss_point, gauss_weight = gauss_integration(3,2)
I = 0
for i = 1:length(gauss_weight)
I += 1* detJ(gauss_point[i,1], gauss_point[i,2]) * gauss_weight[i]
end
@show I
# ANALYTICAL SOLUTION
@show I_analytical = integrate(detJ,(ξ,-1,1),(η,-1,1))
# Plot the domain of integartion in exercise 4
using PyPlot
@show x = collect(range(0, stop = 3, length = 4))
@show y1 = [1-i for i in x]
y2 = [2-i for i in x]
y3 = [2i - 1 for i in x]
y4 = [2i - 3 for i in x]
#using PyPlot
plot(x,y1 , label = "y=1-x")
plot(x,y2 , label = "y=2-x")
plot(x,y3 , label = "y=2x-1")
plot(x,y4 , label = "y=2x-3")
plot([1],[1],"o")
text(0.9,1.3, "(1,1)")
plot([4/3],[-1/3],"o")
text(4/3+0.1,-1/3,"(4/3,-1/3)")
plot([5/3],[1/3],"o")
text(5/3+0.1,1/3,"(5/3,1/3)")
plot([2/3],[1/3],"o")
text(2/3+0.1,1/3,"(2/3,1/3)")
xlabel("x")
ylabel("y")
tick_params(which = "both", direction = "in", color = "black")
tick_params(which="major", length=7)
tick_params(which="minor", length=3)
grid(linestyle = "--", linewidth = 0.8, color = "grey")
grid("on")
minorticks_on()
xlim(0,3)
ylim(-2,2)
legend()
And this is a HTML example, with a linenumber:
<html>
<a href="example.com">Example</a>
</html>
Read more: